434 research outputs found

    Image Forgery Localization Based on Multi-Scale Convolutional Neural Networks

    Full text link
    In this paper, we propose to utilize Convolutional Neural Networks (CNNs) and the segmentation-based multi-scale analysis to locate tampered areas in digital images. First, to deal with color input sliding windows of different scales, a unified CNN architecture is designed. Then, we elaborately design the training procedures of CNNs on sampled training patches. With a set of robust multi-scale tampering detectors based on CNNs, complementary tampering possibility maps can be generated. Last but not least, a segmentation-based method is proposed to fuse the maps and generate the final decision map. By exploiting the benefits of both the small-scale and large-scale analyses, the segmentation-based multi-scale analysis can lead to a performance leap in forgery localization of CNNs. Numerous experiments are conducted to demonstrate the effectiveness and efficiency of our method.Comment: 7 pages, 6 figure

    Implementing an ICC printer profile visualization software

    Get PDF
    Device color gamut plays a crucial role in ICC-based color management systems. Accurately visualizing a device\u27s gamut boundary is important in the analysis of color conversion and gamut mapping. ICC profiles contain all the information which can be used to better understand the capabilities of the device. This thesis project has implemented a printer profile visualization software. The project uses A2B 1 tag in a printer profile as gamut data source, then renders gamut of device the profile represents in CIELAB space with a convex hull algorithm. Gamut can be viewed interactively from any view points. The software also gets the gamut data set using CMM with different intent to do color conversion from a specified printer profile to a generic lab profile (short for A2B conversion) or from a generic CIELAB profile to a specified printer pro file and back to the generic CIELAB profile (short for B2A2B). Gamut can be rendered as points, wire frame or solid surface. Two-dimension a*b* and L*C* gamut slice analytic tools were also developed. The 2D gamut slice algorithm is based on dividing gamut into small sections according to lightness and hue angle. The point with maximum chroma on each section can be used to present a*b* gamut slice on a constant lightness plane or L*C* gamut slice on a constant hue angle plane. Gamut models from two or more device profiles can be viewed in the same window. Through the comparison, we can better understand the device reproduction capacities and proofing problems. This thesis also explained printer profile in details, and examined what gamut data source was the best for gamut visualization. At the same time, some gamut boundary descriptor algorithms were discussed. Convex hull algorithm and device space to CIELAB space mapping algorithm were chosen to render 3D gamut in this thesis project. Finally, an experiment was developed to validate the gamut data generated from the software. The experiment used the same method with profile visualization software to get gamut data set source from Photoshop 6.0. The results of the experiment were showed that the data set derived from visualization software was consistent with those from Photoshop 6.0

    The spectral picture of Bergman Toeplitz operators with harmonic polynomial symbols

    Full text link
    In this paper, it is shown that some new phenomenon related to the spectra of Toeplitz operators with bounded harmonic symbols on the Bergman space. On the one hand, we prove that the spectrum of the Toeplitz operator with symbol zˉ+p{\bar{z}+p} is always connected for every polynomial pp with degree less than 33. On the other hand, we show that for each integer kk greater than 22, there exists a polynomial pp of degree kk such that the spectrum of the Toeplitz operator with symbol zˉ+p{\bar{z}+p} has at least one isolated point but has at most finitely many isolated points. Then these results are applied to obtain a new class of non-hyponormal Toeplitz operators with bounded harmonic symbols on the Bergman space for which Weyl's theorem holds.Comment: 21 page

    ZeroGen: Zero-shot Multimodal Controllable Text Generation with Multiple Oracles

    Full text link
    Automatically generating textual content with desired attributes is an ambitious task that people have pursued long. Existing works have made a series of progress in incorporating unimodal controls into language models (LMs), whereas how to generate controllable sentences with multimodal signals and high efficiency remains an open question. To tackle the puzzle, we propose a new paradigm of zero-shot controllable text generation with multimodal signals (\textsc{ZeroGen}). Specifically, \textsc{ZeroGen} leverages controls of text and image successively from token-level to sentence-level and maps them into a unified probability space at decoding, which customizes the LM outputs by weighted addition without extra training. To achieve better inter-modal trade-offs, we further introduce an effective dynamic weighting mechanism to regulate all control weights. Moreover, we conduct substantial experiments to probe the relationship of being in-depth or in-width between signals from distinct modalities. Encouraging empirical results on three downstream tasks show that \textsc{ZeroGen} not only outperforms its counterparts on captioning tasks by a large margin but also shows great potential in multimodal news generation with a higher degree of control. Our code will be released at https://github.com/ImKeTT/ZeroGen.Comment: 17 pages, preprin

    Toeplitz operators on Lp\mathcal L^p-spaces of a tree

    Full text link
    Let TT be a rooted, countable infinite tree without terminal vertices. In the present paper, we characterize the spectra, self-adjointness and positivity of Toeplitz operators on the spaces of pp-summable functions on TT. Moreover, we obtain a necessary and sufficient condition for Toeplitz operators to have finite rank on such function spaces
    • …
    corecore